
Openshift, Microservices and more...

Ugo Landini
Solution Architect
ulandini@redhat.com

Samuele Dell’Angelo
Solution Architect
samuele@redhat.com

2

389 project | aeolus-configure | anaconda | attr | Audrey | Augeas | AuthHub | Autofs | Avahi | Beaker | Boxes | Btrfs | CacheFS | Cairo | candlepin | certmonger | CIFS | Cluster 3 | cobbler | colord | Completely Fair Scheduler | Conductor
Control Group Configuration Library | Corosync | CRaSH | Crypto API | Cumin | Cygwin | D-Bus | Dashbuilder | Data Grids for the Java Platform | device-mapper | DeviceKit | DistributionUtilities | dlm | Dogtag | DPDK | Dracut | Editline Library
EDS | EJB 3 | elfutils | elfutils | Embedded Jopr | Evolution | Evolution-exchange | eXo JCR | ext3 | ext4 | fence-agents | fence-virt | Flannel | fontconfig | func | Gamin | GateIn Portal | gcc | gcc | gcj | gdb | GFS | GFS2 | glib | gss-proxy
GTK+ | gvfs | gzip | HTCondor | ID Utils | imagefactory | IPSec-Tools | iptraf-ng | Jandex | Java | JGroups | Jreadline | JRuby | JSFUnit | jUDDI | Katello | Kerberos | Kimchi | Koji | libguestfs | libibverbs | libminidump | libnotify | libqb
libstoragemgmt | libuser | libvirt | libxml2 | libxslt | Linux Audit | Linux Infiniband Project | Linux Kernel | Linux PAM | linux-nfs | Luci | LVM2 | LVM2 | lynx | ManageIQ | Matahari | Maven Integration for Eclipse | Maven Integration for
Web Tools Platform | Mock | mod_cluster | moVirt | nautilus | netfilter | NetworkManager | NFS-Ganesha | nmap | Open vSwitch | openais | OpenDaylight | OpenJDK | OpenSSH | OpenSSL | OPNFV | OProfile | oVirt | oVirt Engine | oVirt Node | OVMF | Oz
pacemaker | PackageKit | PackageKit | pango | PAPI | Paradyn | patchutils | Performance Co-Pilot | PicketBox | PicketLink | piglit | pixman | polkit | Polkit Qt | Poppler | Portlet Bridge | PostgreSQL | PressGang
psmisc | Pulp | PulseAudio | pungi | pynfs | QEMU | Red Hat Update Agent | RESTEasy | rgmanager | RHQ | rpm | rpmgrill | RSYSLOG | Samba | Samba | SETroubleshoot ShrinkWrap | slapi-ns | Smokestack | Spacewalk
Spherical | Spice | Spice-gtk | Spice-protocol | Stilts | suds | SWI Prolog | SwitchYard | syslog-ng | System Security Services Daemon | systemd | SystemTap | The Foreman | Thin Crust | tin | UberFire | udev
udisks | udisks | UPower | util-linux | Valgrind | vc-dwim | vdagent | vdsm | vfs | Virt-clone | Virt-image | Virt-Install | Virt-manager | Virt-viewer | Virtual memory manager | Wallaby | Wayland | Wise | XFS | xinput | XNIO | Xorg | XrandR | yum

Containers and Orchestration

4

A Development / Deployment Time:
● Automation
● Continuous Integration / Delivery
● Configuration Management
● Service / API design
● Rigorous Testing
● Dependency management
● Design for eventual consistency
● Artifact repositories

Containers: standardization, automation e
dependency management
User Experience: increased productivity for developers

A Runtime:
● Standardization
● Isolation
● Service Discovery
● Load Balancing
● Circuit Breaker, Fallback
● Health checks & automated recovery
● Distributed logging
● Tracing
● Infrastructure Monitoring

5

● Simple and portable deployment
● Immutable
● Isolated from host OS

Containers pack application with dependencies.

High density and efficiency

6

DEMO BUILD YOUR OWN CONTAINER IN 50 lines

7

● Secure and isolated
● Looks like it is running in its own

environment
● It’s possible to run hundreds of

container on a single machine
● Functionalities are in the kernel
● Docker is only a format

Containers are Linux processes

High density and efficiency

8

Kubernetes is a container orchestrator for
applications
From greek “pilota”: root for “governatore” (from latin: gubernator)

9

A Development / Deployment Time:
● Automation
● Continuous Integration / Delivery
● Configuration Management
● Service / API design
● Rigorous Testing
● Dependency management
● Design for eventual consistency
● Artifact repositories

Kubernetes adds fundamental functionalities
for MSAs (not only!)
Kubernetes is the open evolution of Borg, the system internally used by Google to
orchestrate and scale containers.

A Runtime:
● Standardization
● Isolation
● Service Discovery
● Load Balancing
● Circuit Breaker, Fallback
● Health checks & automated recovery
● Distributed logging
● Tracing
● Infrastructure Monitoring

10

OpenShift Container Platform is the
ENTERPRISE version of Kubernetes

SERVICE CATALOG
(LANGUAGE RUNTIMES, MIDDLEWARE, DATABASES, …)

SELF-SERVICE

APPLICATION LIFECYCLE MANAGEMENT
(CI / CD)

BUILD AUTOMATION DEPLOYMENT AUTOMATION

CONTAINER CONTAINERCONTAINER CONTAINER CONTAINER

NETWORKING SECURITYSTORAGE REGISTRY
LOGS &

METRICS

CONTAINER ORCHESTRATION & CLUSTER MANAGEMENT
(KUBERNETES)

RED HAT ENTERPRISE LINUX

CONTAINER RUNTIME & PACKAGING
(DOCKER)

ATOMIC HOST

INFRASTRUCTURE AUTOMATION & COCKPIT

11

A Development / Deployment Time:
● Automation
● Continuous Integration / Delivery
● Configuration Management
● Service / API design
● Rigorous Testing
● Dependency management
● Design for eventual consistency
● Artifact repositories

Openshift Container Platform adds services for
developers
Developer has only to code and deploy.

A Runtime:
● Standardization
● Isolation
● Service Discovery
● Load Balancing
● Circuit Breaker, Fallback
● Health checks & automated recovery
● Distributed logging
● Tracing
● Infrastructure Monitoring

Openshift Technical Introduction

QUALSIASI
CONTAINER

Amazon Web Services Microsoft Azure Google CloudOpenStackDatacenterLaptop

QUALSIASI
INFRASTRUTTURA

APPLICATION LIFECYCLE MANAGEMENT

ENTERPRISE CONTAINER HOST

CONTAINER ORCHESTRATION AND MANAGEMENT
(KUBERNETES)

OPENSHIFT CONTAINER PLATFORM

CONTAINER

PODPOD

CONTAINER CONTAINERCONTAINER

IP: 10.1.0.11 IP: 10.1.0.55

deployment

image name
replicas
labels
cpu
memory
storage

POD

CONTAINER

POD

CONTAINER

POD

CONTAINER

DEPLOYMENT

POD

CONTAINER

POD

CONTAINER

POD

CONTAINER

BACKEND SERVICE

POD

CONTAINER

role: backend

role: backendrole: backendrole: backendrole: frontend

POD

CONTAINER

POD

CONTAINER

POD

CONTAINER

BACKEND SERVICE

POD

CONTAINER

role: backend

role: backendrole: backendrole: backendrole: frontend

Invoke
Backend API

POD

CONTAINER

POD

CONTAINER

POD

CONTAINER

BACKEND SERVICE

ROUTE
app-prod.mycompany.com

> curl http://app-prod.mycompany.com

POD

C

POD

C

POD

C

PAYMENT DEV

POD

C

POD

C

POD

C

PAYMENT PROD

POD

C

POD

C

POD

C

CATALOG

POD

C

POD

C

POD

C

INVENTORY

❌

❌❌

OPENSHIFT ARCHITECTURE

c

Microservices Architecture 101

23

“Most teams we work with favor bundling an embedded
http server within your web application. There are
plenty of options available: Jetty, SimpleWeb, Webbit
and Owin Self-Host amongst others. Easier automation,
easier deployment and a reduction in the amount of
infrastructure you have to manage lead us to
recommend embedded servers over application
servers for future projects”

ThoughtWorks Technology Radar, May 2015

2015 AP Revenue (Gartner, Nov. 2016) :
● Oracle -4.5%
● IBM -9.5%
● Red Hat +33.3%
● Amazon +50.6%
● Pivotal +22.7%

State of the Market

24

“... is an approach to developing a single application as a suite of small
services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. These services are
built around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of centralized
management of these services, which may be written in different
programming languages and use different data storage technologies.”

Martin Fowler
http://martinfowler.com/articles/microservices.html

Microservices defined

25

● Small single-purpose services driven from DDD (Domain Driven Design) or practical decomposition
of an existing application or existing SOA-style mini-services

● Combined to form a system or application
● Independently deployable (replaceable)
● Independently scalable
● Antifragile - increased robustness and resilience under pressure
● Fully automated software delivery
● Polyglot (language and framework independence)
● API / Contract Focused
● Typically event-driven
● Decentralized data management

Microservices 101

26

Microservices 101

MyService

Tracing

API

Discovery

Invocation

Resilience

Pipeline

Authentication

Logging Elasticity

Monitoring

27

Pod
Container

JVM

Service A

Pod
Container

JVM

Service B

Pod
Container

JVM

Service C

Microservices == Distributed Computing

28

Wait, but weren’t we already doing this
distributed stuff...

● … what about CORBA?
● … and RMI?
● … EJB?
● … SOA?

What’s the difference?

29

Maturing the Application LifeCycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle

30

Maturing the Application LifeCycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle
Fast Moving Java EE Monolith

31

Maturing the Application LifeCycle

Month
0

Month
3

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Week
8

Week
9

Week
10

Week
11

Monolith Java EE Lifecycle
Fast Moving Java EE Monolith
Java EE Microservices

32

What’s the difference?

● Same ideas, new technologies (which will evolve in the
future)

● But now, we should be able to bring a new feature in
production in a few minutes

33

The Good

● Domain-Driven Design
● Low coupling, high cohesion
● APIs and contracts
● Agile software development
● Full lifecycle automation
● Dev and Ops working together
● Common packaging / container format
● Rethinking Data

Microservices: the Good, the Bad...

34

The Bad

● Too much Dogma / CS purity
● Tradeoff between Agility & Operational

Complexity
● Magnificent Monoliths and Stupendous SOA

are not necessarily bad
● Microservices / Unicorn Envy
● Not all organizations can afford the skills and

talent required to be successful
● Maintaining data consistency is hard in

distributed systems

Microservices: the Good, the Bad...

35

The Ugly
● Building large scale distributed systems is really

hard
● Monitoring / APM tools need to catch up
● Heterogeneity (languages, frameworks, data

stores)
● Event-based, asynchronous, reactive programming

is still in it’s infancy and skills are rare
● CAP: Consistency, Availability, Partition Tolerance

? – choose two

Microservices: the Good, the Bad...

36

● Understand and state your goals
● Understand the tradeoffs
● Start with People, Process and Culture

○ Agile Dev / DevOps is a prerequisite
● Invest in automation (provisioning, CI/CD, etc.)
● Start small

○ Small non-mission-critical green-field
○ Decomposition of existing monolith

● Get help - eg. Red Hat Innovation Labs

Microservices Recommendations

37

Config Server

NETFLIX Ribbon

Java Microservices Platform (2014)

38

Why these components?
Eureka is the Service Registry where the clients
lookup for service locations a.k.a Service Discovery

Config Server

Zuul is the smart proxy purely based on Java

Ribbon is the client side Load Balancer

Hystrix is the Circuit Breaker

Config Server externalized the Configuration

Zipkin is the Distributed Tracer

39

Why these components?
Eureka is the Service Registry where the clients
lookup for service locations a.k.a Service Discovery

Config Server

Zuul is the smart proxy purely based on Java

Ribbon is the client side Load Balancer

Hystrix is the Circuit Breaker

Config Server externalized the Configuration

Zipkin is the Distributed Tracer

https://www.amazon.com/Release-Design-Deploy-Production-Ready-Software/dp/1680502395/ref=sr_1_1?ie=UTF8&qid=1504218021&sr=8-1&keywords=release+it

40

bit.ly/msa-instructions

2.0

http://bit.ly/msa-instructions

41

Config Server

NETFLIX Ribbon

Better Microservices Platform
(2016/2017)

42

Config Server

NETFLIX Ribbon

Even Better Microservices Platform (2018)

Istio

Istio - Sail
(Kubernetes - Helmsman or ship’s pilot)

Istio

Istio

Resilience Across
Languages and Platforms

Increase reliability by shielding
applications from flaky networks
and cascading failures in adverse
conditions.

Policy Enforcement

Apply organizational policy to
the interaction between
services, ensure access
policies are enforced and
resources are fairly
distributed among
consumers.

Intelligent Routing and
Load Balancing

Control traffic between
services with dynamic route
configuration.

Conduct A/B tests, release
canaries, and gradually
upgrade versions using
red/black deployments.

Telemetry and Reporting

Understand the dependencies
between services, the nature and
flow of traffic between them, and
quickly identify issues with
distributed tracing.

Sidecar?

Pod
Container

JVM

Service A

Side-car Container

Pod
Container

JVM

Service B

Side-car Container

Pod
Container

JVM

Service C

Side-car Container

Pods with 2 containers!

Istio Service Mesh
Currently upstream only

Envoy

istio-ingress

Envoy

App A

Envoy

App B

Envoy

App C

istio-pilot istio-mixer istio-auth

HTTP Req/Resp

Kubernetes Pods

Istio Components Config to Envoy Access Control and Telemetry

Istio Components

● Control Plane
○ Istio-Pilot - istioctl, API, config
○ Istio-Mixer - Quota, Telemetry, Rate Limiting, ACL
○ Istio-Auth - TLS and Certificates

● Data Plane
○ Envoy proxy deployed as “side-cars” with applications

Circuit Breakers

Before Istio After Istio
Boiler plate code No code related to circuit breaking mixed with

business logic

Multiple libraries and dependencies e.g. Hystrix No libraries

Separate dashboard to collect circuit breaker
e.g. Hystrix Turbine

All metrics can be collected and displayed in Grafana
without extra bit of code

Define circuit breakers using Kubernetes Tags

Tracing

Before Istio After Istio

Boiler plate code No code related to tracing mixed with business logic

Multiple libraries and dependencies e.g. Zipkin No libraries

All in one place

How to use it

Routes and commands injected via CLI or API:

apiVersion: config.istio.io/v1alpha2

kind: RouteRule

metadata:

 name: reviews-test-v2

spec:

 destination:

 name: reviews

 precedence: 2

 match:

 request:

 headers:

 cookie:

 regex: "^(.*?;)?(user=jason)(;.*)?$"

 route:

 - labels:

 version: v2

Operator Framework

Why Operators?

$ oc new-app myapp 30 days later….

Developer

Platform
Services Team

Tries to keep the application
framework or runtime from
exploding

Wouldn’t be great if….

The Platform

$ oc create -f myAppsTask.yaml

Developer

● re-index
● backup
● restore
● defrag
● recycle
● ...any admin task

}
Operator SDK

Operator Lifecycle Management

The Result

Your App

Is as automated as these apps but runs….

